•  
  •  
 

Abstract

Leaf traits are analyzed as essential drivers for the evolutionary and ecological role of plant defense mechanisms. Plants show leaf trait variation as a response to the diverse environmental conditions, like different successional stages. Those variations can impact leaf herbivory rates and drive changes in the allocation of plant resources. In this study, we aimed at comparing the expression of leaf defenses in established plants over different successional stages in a tropical dry forest to understand how these defenses modify the plant–herbivore interactions based on herbivory rates. We analyzed physical leaf traits (specific leaf area, thickness, and density), nutrient content (N, P, and K), total phenolic compounds, and leaf herbivory, of the native tree species Aspidosperma pyrifolium and Cenostigma pyramidale, in early- and late-successional stage areas. Results showed that the plant investment in defenses varies according to the successional stage and that both species have similar defense strategies, confirming the resource availability hypothesis. Individuals from the early stage adopt a strategy to lower sclerophylly, higher nutrient content and less phenolic compounds, while the late-stage individuals showed an opposite behaviour. For both species in this study, the average percentage of leaf herbivory observed was 40% higher in the early compared to the late-stage area. Our data indicate that plant defenses are tightly coupled to sclerophylly and investments in secondary metabolites, and the environmental conditions of different successional stage drive that plasticity in such leaf traits.

DOI

10.1080/23766808.2021.1953893

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.